Density-Based Heterogeneous Data Stream Clustering Algorithm with Mixed Distance Measure Methods

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Density Based Distribute Data Stream Clustering Algorithm

To solve the problem of distributed data streams clustering, the algorithm DB-DDSC (Density-Based Distribute Data Stream Clustering) was proposed. The algorithm consisted of two stages. First presented the concept of circular-point based on the representative points and designed the iterative algorithm to find the densityconnected circular-points, then generated the local model at the remote si...

متن کامل

Density-Based Clustering over an Evolving Data Stream with Noise

Clustering is an important task in mining evolving data streams. Beside the limited memory and one-pass constraints, the nature of evolving data streams implies the following requirements for stream clustering: no assumption on the number of clusters, discovery of clusters with arbitrary shape and ability to handle outliers. While a lot of clustering algorithms for data streams have been propos...

متن کامل

LeaDen-Stream: A Leader Density-Based Clustering Algorithm over Evolving Data Stream

Clustering evolving data streams is important to be performed in a limited time with a reasonable quality. The existing micro clustering based methods do not consider the distribution of data points inside the micro cluster. We propose LeaDen-Stream (Leader Density-based clustering algorithm over evolving data Stream

متن کامل

K Modes Clustering Algorithm Based on a New Distance Measure

T he leading par tit ional clustering technique, K Modes, is one of the most computationally eff icient clustering methods fo r categ orical data. In the t raditional K Modes algo rithm, the simple matching dissim ilarity measure is used to compute the distance betw een two values of the same catego rical at t ributes. T his compares tw o categorical v alues directly and results in either a dif...

متن کامل

SOStream: Self Organizing Density-Based Clustering over Data Stream

In this paper we propose a data stream clustering algorithm, called Self Organizing density based clustering over data Stream (SOStream). This algorithm has several novel features. Instead of using a fixed, user defined similarity threshold or a static grid, SOStream detects structure within fast evolving data streams by automatically adapting the threshold for density-based clustering. It also...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Database Theory and Application

سال: 2015

ISSN: 2005-4270,2005-4270

DOI: 10.14257/ijdta.2015.8.3.14